• Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387(10017):435–43. https://doi.org/10.1016/s0140-6736(15)00805-3.

    Article 
    PubMed 

    Google Scholar
     

  • Bundy JD, Li C, Stuchlik P, Bu X, Kelly TN, Mills KT, et al. Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network Meta-analysis. JAMA Cardiol. 2017;2(7):775–81. https://doi.org/10.1001/jamacardio.2017.1421.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson AH, Yang W, Townsend RR, Pan Q, Chertow GM, Kusek JW, et al. Time-updated systolic blood pressure and the progression of chronic kidney disease: a cohort study. Ann Intern Med. 2015;162(4):258–65. https://doi.org/10.7326/m14-0488.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2224–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou B, Bentham J, Di Cesare M, Bixby H, Danaei G, Cowan MJ, et al. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19· 1 million participants. Lancet. 2017;389(10064):37–55.

    Article 

    Google Scholar
     

  • Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(6):441–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherfan M, Vallée A, Kab S, Salameh P, Goldberg M, Zins M, et al. Unhealthy behaviors and risk of uncontrolled hypertension among treated individuals-the CONSTANCES population-based study. Sci Rep. 2020;10(1):1–12.

    Article 

    Google Scholar
     

  • Oraii A, Shafiee A, Jalali A, Alaeddini F, Saadat S, Sadeghian S, et al. Prevalence, awareness, treatment, and control of hypertension among adult residents of Tehran: the Tehran cohort study. Glob Heart. 2022;17(1):31.

  • Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133(2):187–225.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray CJ. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2019;393:1958–72.


    Google Scholar
     

  • World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013–2020: World Health Organization; 2013.


    Google Scholar
     

  • World Health Organization. Tackling NCDs:’best buys’ and other recommended interventions for the prevention and control of noncommunicable diseases. 2017. https://apps.who.int/iris/bitstream/handle/10665/259232/WHO-NMH-NVI-17.9-eng.pdf?sequence=1&isAllowed=y. Accessed 28 Sep 2021.

  • World Health Organization. High blood pressure-country experiences and effective interventions utilized across the European Region. 2013. https://apps.who.int/iris/bitstream/handle/10665/108619/e96816.pdf?sequence=1&isAllowed=y. Accessed 18 May 2021.

  • Pekka P, Pirjo P, Ulla U. Influencing public nutrition for non-communicable disease prevention: from community intervention to national programme-experiences from Finland. Public Health Nutr. 2002;5(1A):245–52.

    Article 
    PubMed 

    Google Scholar
     

  • Karppanen H, Mervaala E. Sodium intake and hypertension. Prog Cardiovasc Dis. 2006;49(2):59–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He F, Brinsden H, MacGregor G. Salt reduction in the United Kingdom: a successful experiment in public health. J Hum Hypertens. 2014;28(6):345–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jensen JD, Smed S. The Danish tax on saturated fat–short run effects on consumption, substitution patterns and consumer prices of fats. Food Policy. 2013;42:18–31.

    Article 

    Google Scholar
     

  • Peykari N, Hashemi H, Dinarvand R, Haji-Aghajani M, Malekzadeh R, Sadrolsadat A, et al. National action plan for non-communicable diseases prevention and control in Iran; a response to emerging epidemic. J Diabetes Metab Disord. 2017;16(1):1–7.

    Article 

    Google Scholar
     

  • Terwindt F, Rajan D, Soucat A. Priority-setting for national health policies, strategies and plans. Strategizing national health in the 21st century: a handbook; 2016. p. 71.


    Google Scholar
     

  • Kilic M, Kaya I. Investment project evaluation by a decision making methodology based on type-2 fuzzy sets. Appl Soft Comput. 2015;27:399–410.

    Article 

    Google Scholar
     

  • Kaya İ, Çolak M, Terzi F. A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strategy Rev. 2019;24:207–28.

    Article 

    Google Scholar
     

  • Velasquez M, Hester PT. An analysis of multi-criteria decision making methods. Int J Operations Res. 2013;10(2):56–66.


    Google Scholar
     

  • Marsh K, Dolan P, Kempster J, Lugon M. Prioritizing investments in public health: a multi-criteria decision analysis. J Public Health. 2013;35(3):460–6.

    Article 
    CAS 

    Google Scholar
     

  • Devlin N, Sussex J. Incorporating Multiple Criteria in HTA: Methods and Processes. London: Office of Health Economics; 2011.

  • Youngkong S, Teerawattananon Y, Tantivess S, Baltussen R. Multi-criteria decision analysis for setting priorities on HIV/AIDS interventions in Thailand. Health Res Policy Syst. 2012;10(1):1–8.

    Article 

    Google Scholar
     

  • Ramesh R, Zionts S. Multiple criteria decision making. In: Gass SI, Fu MC, editors. Encyclopedia of operations research and management science. Boston: Springer US; 2013. p. 1007–13.

    Chapter 

    Google Scholar
     

  • Wu RMX, Zhang Z, Yan W, Fan J, Gou J, Liu B, et al. A comparative analysis of the principal component analysis and entropy weight methods to establish the indexing measurement. PLoS One. 2022;17(1):e0262261. https://doi.org/10.1371/journal.pone.0262261.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gyani J, Ahmed A, Haq MA. MCDM and various prioritization methods in AHP for CSS: a comprehensive review. IEEE Access. 2022;10:33492–511. https://doi.org/10.1109/ACCESS.2022.3161742.

    Article 

    Google Scholar
     

  • Mukhametzyanov I. Specific character of objective methods for determining weights of criteria in MCDM problems: entropy, CRITIC and SD. Decis Making Appl Manage Eng. 2021;4(2):76–105. https://doi.org/10.31181/dmame210402076i.

    Article 

    Google Scholar
     

  • Dhurkari RK. MCDM methods: practical difficulties and future directions for improvement. RAIRO-Oper Res. 2022;56(4):2221–33.

    Article 

    Google Scholar
     

  • Pamučar D, Stević Ž, Sremac S. A new model for determining weight coefficients of criteria in MCDM models: full consistency method (FUCOM). Symmetry. 2018;10:393.

    Article 

    Google Scholar
     

  • Mekic A. Multi-criteria decision making for improvement of security and efficiency at airport security checkpoints using agent-based models. Delft University of Technology. 2019. http://resolver.tudelft.nl/uuid:65000364-7666-457b-b5cd-808e26ed1d68. Accessed 15 Feb 2022.

  • Žižović M, Pamucar D. New model for determining criteria weights: level based weight assessment (LBWA) model. Decis Making Appl Manage Eng. 2019;2(2):126–37.


    Google Scholar
     

  • Žižović MR, Pamučar D. 5. The fuzzy model for determining criteria weights based on level construction. In: Dinesh CSB, Mangey R, editors. Computational Intelligence. Berlin, Boston: De Gruyter; 2020. p. 77–90.

    Chapter 

    Google Scholar
     

  • Islam MM, Arakawa M. Integrated multi-criteria group decision-making model for supplier selection in an uncertain environment. Cogent Eng. 2022;9(1):2079220.

    Article 

    Google Scholar
     

  • Rezaei J. Best-worst multi-criteria decision-making method. Omega. 2015;53:49–57.

    Article 

    Google Scholar
     

  • Nyimbili PH, Erden T. Comparative evaluation of GIS-based best–worst method (BWM) for emergency facility planning: perspectives from two decision-maker groups. Nat Hazards. 2021;105(1):1031–67.

    Article 

    Google Scholar
     

  • Pamučar D, Ecer F, Cirovic G, Arlasheedi MA. Application of improved best worst method (BWM) in real-world problems. Mathematics. 2020;8(8):1342. https://doi.org/10.3390/math8081342.

    Article 

    Google Scholar
     

  • Saaty TL. A scaling method for priorities in hierarchical structures. J Math Psychol. 1977;15(3):234–81.

    Article 

    Google Scholar
     

  • Saaty TL. Multicriteria decision making: the analytic hierarchy process: planning, priority setting resource allocation: RWS Publications; 1990.


    Google Scholar
     

  • Saaty RW. The analytic hierarchy process—what it is and how it is used. Math Model. 1987;9(3–5):161–76.

    Article 

    Google Scholar
     

  • Saaty TL. Fundamentals of the analytic hierarchy process. The analytic hierarchy process in natural resource and environmental decision making: Springer; 2001. p. 15–35.

    Book 

    Google Scholar
     

  • Zhu G-N, Hu J, Qi J, Gu C-C, Peng Y-H. An integrated AHP and VIKOR for design concept evaluation based on rough number. Adv Eng Inform. 2015;29(3):408–18.

    Article 

    Google Scholar
     

  • Salomon VA. Absolute measurement and ideal synthesis on AHP. Int J Anal Hierarchy Process. 2016;8(3):538–45. https://doi.org/10.13033/ijahp.v8i3.452.

    Article 

    Google Scholar
     

  • Wind Y, Saaty TL. Marketing applications of the analytic hierarchy process. Manag Sci. 1980;26(7):641–58.

    Article 

    Google Scholar
     

  • Heidenberger K, Stummer C. Research and development project selection and resource allocation: a review of quantitative modelling approaches. Int J Manag Rev. 1999;1(2):197–224.

    Article 

    Google Scholar
     

  • Richman MB, Forman EH, Bayazit Y, Einstein DB, Resnick MI, Stovsky MD. A novel computer based expert decision making model for prostate cancer disease management. J Urol. 2005;174(6):2310–8.

    Article 
    PubMed 

    Google Scholar
     

  • Shahabi S, Skempes D, Behzadifar M, Tabrizi R, Nazari B, Ghanbari MK, et al. Recommendations to improve insurance coverage for physiotherapy services in Iran: a multi criteria decision-making approach. Cost Effect Resour Alloc. 2021;19(1):1–15.

    Article 

    Google Scholar
     

  • Karamaşa Ç, Demir E, Memiş S, Korucuk S. Weighting the factors affectıng logıstıcs outsourcıng. Decis Making Appl Manage Eng. 2021;4(1):19–32. https://doi.org/10.31181/dmame2104019k.

    Article 

    Google Scholar
     

  • Bakır M, Atalık Ö. Application of fuzzy AHP and fuzzy MARCOS approach for the evaluation of e-service quality in the airline industry. Decis Making Appl Manage Eng. 2021;4(1):127–52.

    Article 

    Google Scholar
     

  • Alosta A, Elmansuri O, Badi I. Resolving a location selection problem by means of an integrated AHP-RAFSI approach. Reports. Mech Eng. 2021;2(1):135–42. https://doi.org/10.31181/rme200102135a.

    Article 

    Google Scholar
     

  • Rajak M, Shaw K. Evaluation and selection of mobile health (mHealth) applications using AHP and fuzzy TOPSIS. Technol Soc. 2019;59:101186.

    Article 

    Google Scholar
     

  • Hyams T, Golden B, Sammarco J, Sultan S, King-Marshall E, Wang MQ, et al. Evaluating preferences for colorectal cancer screening in individuals under age 50 using the analytic hierarchy process. BMC Health Serv Res. 2021;21(1):1–12.


    Google Scholar
     

  • Schmidt K, Aumann I, Hollander I, Damm K, von der Schulenburg J-MG. Applying the analytic hierarchy process in healthcare research: a systematic literature review and evaluation of reporting. BMC Med Inform Decis Making. 2015;15(1):1–27.

    Article 

    Google Scholar
     

  • Byun DH, Chang RS, Park M-B, Son H-R, Kim C-B. Prioritizing community-based intervention programs for improving treatment compliance of patients with chronic diseases: applying an analytic hierarchy process. Int J Environ Res Public Health. 2021;18(2):455.

    Article 
    PubMed Central 

    Google Scholar
     

  • Sepanlou SG, Mehdipour P, Ghanbari A, Djalalinia S, Peykari N, Kasaeian A, et al. Levels and trends of hypertension at national and subnational scale in Iran from 1990 to 2016: a systematic review and pooled analysis. Arch Iran Med. 2021;24(4):306–16.

  • Babashahi M, Omidvar N, Joulaei H, Zargaraan A, Zayeri F, Veisi E, et al. Scrutinize of healthy school canteen policy in Iran’s primary schools: a mixed method study. BMC Public Health. 2021;21(1):1566. https://doi.org/10.1186/s12889-021-11587-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amerzadeh M, Takian A. Reducing sugar, fat, and salt for prevention and control of noncommunicable diseases (NCDs) as an adopted health policy in Iran. Med J Islam Republic Iran. 2020;34:136. https://doi.org/10.47176/mjiri.34.136.

    Article 

    Google Scholar
     

  • Cross HE, Hardee-Cleaveland K, Jewell NC. Reforming operational policies: a pathway to improving reproductive health programs: POLICY Project, Futures Group International; 2001.


    Google Scholar
     

  • Baltussen R, Niessen L. Priority setting of health interventions: the need for multi-criteria decision analysis. Cost Effect Resour Alloc. 2006;4(1):1–9.

    Article 

    Google Scholar
     

  • Krieger J, Bleich SN, Scarmo S, Ng SW. Sugar-sweetened beverage reduction policies: progress and promise. Annu Rev Public Health. 2021;42:439–61. https://doi.org/10.1146/annurev-publhealth-090419-103005.

    Article 
    PubMed 

    Google Scholar
     

  • Omidvar N, Babashahi M, Abdollahi Z, Al-Jawaldeh A. Enabling food environment in kindergartens and schools in Iran for promoting healthy diet: is it on the right track? Int J Environ Res Public Health. 2021;18(8). https://doi.org/10.3390/ijerph18084114.

  • Yazdi Feyzabadi V, Keshavarz Mohammadi N, Omidvar N, Karimi-Shahanjarini A, Nedjat S, Rashidian A. Factors Associated With Unhealthy Snacks Consumption Among Adolescents in Iran’s Schools. Int J Health Policy Manag. 2017;6(9):519–28. https://doi.org/10.15171/ijhpm.2017.09.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babashahi M. Analysis of policies related to children’s food environment (emphasizing on industrial food) in Iran in order to provide policy recommendations for child-friendly food environment [thesis]. Tehran: Shahid Beheshti University of Medical Sciences; 2021.


    Google Scholar
     

  • Yazdi-Feyzabadi V, Omidvar N, Keshavarz Mohammadi N, Nedjat S, Karimi-Shahanjarini A, Rashidian A. Is an Iranian health promoting school status associated with improving school food environment and snacking behaviors in adolescents? Health Promot Int. 2018;33(6):1010–21. https://doi.org/10.1093/heapro/dax045.

    Article 
    PubMed 

    Google Scholar
     

  • Hughes R. Practical public health nutrition: John Wiley & Sons; 2010.


    Google Scholar
     

  • Hu X, Zheng M, Zhao J, Gao R, Li B, Chen X, et al. Research on application performance index system of pure electric buses based on extensible cloud model. World Electric Vehicle J. 2022;13(3):45. https://doi.org/10.3390/wevj13030045.

    Article 

    Google Scholar
     

  • Sabzekar M, Afarideh F, Deldari A, Rezaei A. DAMP: Decision-Making with the Combination of Analytical Hierarchy Process and Deep Learning (Case study: Car Sales Forecasting). Comput Knowledge Eng. 2020;3(1):123–8. https://doi.org/10.22067/cke.2021.70486.1012.

    Article 

    Google Scholar
     

  • Rezaei J, Arab A, Mehregan M. Equalizing bias in eliciting attribute weights in multiattribute decision-making: experimental research. J Behav Decis Mak. 2022;35(2):e2262. https://doi.org/10.1002/bdm.2262.

    Article 

    Google Scholar
     

  • Karthikeyan R, Venkatesan K, Chandrasekar A. A comparison of strengths and weaknesses for analytical hierarchy process. J Chem Pharm Sci. 2016;9(3):12–5.


    Google Scholar
     

  • Canco I, Kruja D, Iancu T. AHP, a reliable method for quality decision making: a case study in business. Sustainability. 2021;13(24):13932. https://doi.org/10.3390/su132413932.

    Article 

    Google Scholar
     

  • Giannarou L, Zervas E. Using Delphi technique to build consensus in practice. Int J Business Sci Appl Manage. 2014;9(2):65–82.


    Google Scholar
     

  • Melillo P, Pecchia L. What is the appropriate sample size to run analytic hierarchy process in a survey-based research. Proceedings of the The International Symposium on the Analytic Hierarchy Process. London, UK, 4–8 August 2016; pp. 4–8.

  • Keeney S, McKenna H, Hasson F. The Delphi technique in nursing and health research: John Wiley & Sons; 2011.

    Book 

    Google Scholar
     

  • Hsu C-C, Sandford BA. The Delphi technique: making sense of consensus. Pract Assess Res Eval. 2007;12(1):10.


    Google Scholar
     

  • Shariff N. Utilizing the Delphi survey approach: a review. J Nurs Care. 2015;4(3):246.

    Article 

    Google Scholar
     

  • Saaty TL. Fundamentals of decision making and priority theory with the analytic hierarchy process: RWS publications; 2000.


    Google Scholar
     

  • Saaty TL. The analytic hierarchy process. Planning, Priority, Setting, Resouce Allocation. RWS Publications: University of Pittsburgh; 1990.


    Google Scholar
     

  • Arrow KJ. Uncertainty and the welfare economics of medical care (American economic review, 1963): Duke University Press; 2003.


    Google Scholar
     

  • Triantaphyllou E. Multi-criteria decision making methods. Multi-criteria decision making methods: a comparative study: Springer; 2000. p. 5–21.


    Google Scholar
     

  • Hwang C-L, Yoon K. Methods for multiple attribute decision making. In: Hwang C-L, Yoon K, editors. Multiple attribute decision making: methods and applications a state-of-the-art survey. Heidelberg: Springer Berlin Heidelberg; 1981. p. 58–191.

    Chapter 

    Google Scholar
     

  • Gayatri V, Chetan M. Comparative study of different multi-criteria decision-making methods. Int J Adv Comput Theor Eng. 2013;2(4):9–12.

  • Yazdani M, Zarate P, Zavadskas EK, Turskis Z. A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag Decis. 2018;57(9):2501–19.

  • Dolan JG, Isselhardt BJ, Cappuccio JD. The analytic hierarchy process in medical decision making: a tutorial. Med Decis Mak. 1989;9(1):40–50.

    Article 
    CAS 

    Google Scholar
     

  • Kallas Z, editor Butchers’ preferences for rabbit meat; AHP Pairwise comparisons versus a LIKERT scale valuation. Proceedings of the International Symposium on the Analytic Hierarchy Process for Multicriteria Decision Making; 2011;1–6.

  • Liberatore MJ, Nydick RL. The analytic hierarchy process in medical and health care decision making: a literature review. Eur J Oper Res. 2008;189(1):194–207.

    Article 

    Google Scholar
     

  • Şahin T, Ocak S, Top M. Analytic hierarchy process for hospital site selection. Health Policy Technol. 2019;8(1):42–50.

    Article 

    Google Scholar
     

  • Yetim B, Sönmez S, Konca M, İlgün G. Prioritization of the policies and practices applied in Turkey to fight against covid-19 through AHP technique. Saúde e Sociedade 2021;30(4):1–11.

  • McLaren L, Sumar N, Barberio AM, Trieu K, Lorenzetti DL, Tarasuk V, et al. Population-level interventions in government jurisdictions for dietary sodium reduction. Cochrane Database Syst Rev. 2016;9(9):CD0101669.

  • Hyseni L, Elliot-Green A, Lloyd-Williams F, Kypridemos C, O’Flaherty M, McGill R, et al. Systematic review of dietary salt reduction policies: evidence for an effectiveness hierarchy? PLoS One. 2017;12(5):e0177535.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wyness LA, Butriss JL, Stanner SA. Reducing the population’s sodium intake: the UK Food Standards Agency’s salt reduction programme. Public Health Nutr. 2012;15(2):254–61.

    Article 
    PubMed 

    Google Scholar
     

  • Gressier M, Sassi F, Frost G. Contribution of reformulation, product renewal, and changes in consumer behavior to the reduction of salt intakes in the UK population between 2008/2009 and 2016/2017. Am J Clin Nutr. 2021;114(3):1092–99.

  • Federici C, Detzel P, Petracca F, Dainelli L, Fattore G. The impact of food reformulation on nutrient intakes and health, a systematic review of modelling studies. BMC Nutr. 2019;5(1):2. https://doi.org/10.1186/s40795-018-0263-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cobiac LJ, Magnus A, Barendregt JJ, Carter R, Vos T. Improving the cost-effectiveness of cardiovascular disease prevention in Australia: a modelling study. BMC Public Health. 2012;12(1):1–10.

    Article 

    Google Scholar
     

  • Cobiac LJ, Vos T, Veerman JL. Cost-effectiveness of interventions to reduce dietary salt intake. Heart. 2010;96(23):1920–5.

    Article 
    PubMed 

    Google Scholar
     

  • Kaldor JC, Thow AM, Schönfeldt H. Using regulation to limit salt intake and prevent non-communicable diseases: lessons from South Africa’s experience. Public Health Nutr. 2019;22(7):1316–25.

    PubMed 

    Google Scholar
     

  • Webster J, Trieu K, Dunford E, Hawkes C. Target salt 2025: a global overview of national programs to encourage the food industry to reduce salt in foods. Nutrients. 2014;6(8):3274–87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Kuwaitis lower blood pressure by reducing salt in bread. 2019. Accessed 8 Apr 2021.

  • Charlton K, Webster J, Kowal P. To legislate or not to legislate? A comparison of the UK and south African approaches to the development and implementation of salt reduction programs. Nutrients. 2014;6(9):3672–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girgis S, Neal B, Prescott J, Prendergast J, Dumbrell S, Turner C, et al. A one-quarter reduction in the salt content of bread can be made without detection. Eur J Clin Nutr. 2003;57(4):616–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blais CA, Pangborn RM, Borhani NO, Ferrell MF, Prineas RJ, Laing B. Effect of dietary sodium restriction on taste responses to sodium chloride: a longitudinal study. Am J Clin Nutr. 1986;44(2):232–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scientific Advisory Committee on Nutrition. Potassium-based sodium replacers: assessment of the health benefits and risks of using potassium-based sodium replacers in foods in the UK. Scientific Advisory Committee on Nutrition: London, UK. 2017. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/66 0526/SACN_COT_-_Potassium-based_sodium_replacers.pdf. Accessed 26 Jan 2021.

  • IoMUCoStRS I. Strategies to reduce sodium intake in the United States. Washington (DC): National Academies Press (US); 2010.


    Google Scholar
     

  • Group CSSSC. Salt substitution: a low-cost strategy for blood pressure control among rural Chinese. A randomized, controlled trial. J Hypertens. 2007;25(10):2011–8.

    Article 

    Google Scholar
     

  • He FJ, Jenner KH, MacGregor GA. WASH—world action on salt and health. Kidney Int. 2010;78(8):745–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emonds EE, Thota P, Chen BA, Hernandez AV, Pasupuleti V, Miranda JJ, et al. Effect of low-sodium salt substitutes on blood pressure, detected hypertension, stroke and mortality. 2019.


    Google Scholar
     

  • Harnack LJ, Cogswell ME, Shikany JM, Gardner CD, Gillespie C, Loria CM, et al. Sources of sodium in US adults from 3 geographic regions. Circulation. 2017;135(19):1775–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng Y-G, Li W, Wen X-X, Li Y, Hu J-H, Zhao L-C. Effects of salt substitutes on blood pressure: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014;100(6):1448–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du S, Neiman A, Batis C, Wang H, Zhang B, Zhang J, et al. Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am J Clin Nutr. 2014;99(2):334–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinopoli DA, Lawless HT. Taste properties of potassium chloride alone and in mixtures with sodium chloride using a check-all-that-apply method. J Food Sci. 2012;77(9):S319–S22. https://doi.org/10.1111/j.1750-3841.2012.02862.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cepanec K, Vugrinec S, Cvetković T, Ranilović J. Potassium chloride-based salt substitutes: a critical review with a focus on the patent literature. Compr Rev Food Sci Food Saf. 2017;16(5):881–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maleki A, Soltanian AR, Zeraati F, Sheikh V, Poorolajal J. The flavor and acceptability of six different potassium-enriched (sodium reduced) iodized salts: a single-blind, randomized, crossover design. Clin Hyper. 2016;22(1):1–5. https://doi.org/10.1186/s40885-016-0054-9.

    Article 

    Google Scholar
     

  • Greer RC, Marklund M, Anderson CA, Cobb LK, Dalcin AT, Henry M, et al. Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension. 2020;75(2):266–74. https://doi.org/10.1161/HYPERTENSIONAHA.119.13241.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cappuccio FP, Buchanan LA, Ji C, Siani A, Miller MA. Systematic review and meta-analysis of randomised controlled trials on the effects of potassium supplements on serum potassium and creatinine. BMJ Open. 2016;6(8):e011716. https://doi.org/10.1136/bmjopen-2016-011716.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cecchini M, Sassi F, Lauer JA, Lee YY, Guajardo-Barron V, Chisholm D. Tackling of unhealthy diets, physical inactivity, and obesity: health effects and cost-effectiveness. Lancet. 2010;376(9754):1775–84.

    Article 
    PubMed 

    Google Scholar
     

  • Mejean C, Macouillard P, Péneau S, Hercberg S, Castetbon K. Consumer acceptability and understanding of front-of-pack nutrition labels. J Hum Nutr Diet. 2013;26(5):494–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Branca F, Lartey A, Oenema S, Aguayo V, Stordalen GA, Richardson R, et al. Transforming the food system to fight non-communicable diseases. BMJ. 2019;364:l296.

  • McGuire S. Institute of medicine. 2012. Front-of-package nutrition rating systems and symbols: promoting healthier choices. Washington, DC: the National Academies Press. Adv Nutr. 2012;3(3):332–3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Bend DL, Lissner L. Differences and similarities between front-of-pack nutrition labels in Europe: a comparison of functional and visual aspects. Nutrients. 2019;11(3):626.

    Article 
    PubMed Central 

    Google Scholar
     

  • Kanter R, Vanderlee L, Vandevijvere S. Front-of-package nutrition labelling policy: global progress and future directions. Public Health Nutr. 2018;21(8):1399–408.

    Article 
    PubMed 

    Google Scholar
     

  • Program UGFR. Front-of-package (FOP) food Labelling: empowering consumers to make healthy choices; 2020.


    Google Scholar
     

  • Song J, Brown MK, Tan M, MacGregor GA, Webster J, Campbell NR, et al. Impact of color-coded and warning nutrition labelling schemes: a systematic review and network meta-analysis. PLoS Med. 2021;18(10):e1003765.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pietinen P, Valsta LM, Hirvonen T, Sinkko H. Labelling the salt content in foods: a useful tool in reducing sodium intake in Finland. Public Health Nutr. 2008;11(4):335–40.

    Article 
    PubMed 

    Google Scholar
     

  • Shangguan S, Afshin A, Shulkin M, Ma W, Marsden D, Smith J, et al. A meta-analysis of food labeling effects on consumer diet behaviors and industry practices. Am J Prev Med. 2019;56(2):300–14.

    Article 
    PubMed 

    Google Scholar
     

  • Corvalán Aguilar C, Reyes M, Garmendia ML, Uauy D-IR. Structural responses to the obesity and non-communicable diseases epidemic: update on the Chilean law of food labelling and advertising; 2019.


    Google Scholar
     

  • Reyes M, Smith Taillie L, Popkin B, Kanter R, Vandevijvere S, Corvalán C. Changes in the amount of nutrient of packaged foods and beverages after the initial implementation of the Chilean law of food Labelling and advertising: a nonexperimental prospective study. PLoS Med. 2020;17(7):e1003220.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moslemi M, Kheirandish M, Mazaheri RNF, Hosseini H, Jannat B, Mofid V, et al. National food policies in the Islamic Republic of Iran aimed at control and prevention of noncommunicable diseases. East Mediterr Health J. 2020;26(12):1556–64.

    Article 
    PubMed 

    Google Scholar
     

  • Ghazavi N, Rahimi E, Esfandiari Z, Shakerian A. Accuracy of the amount of trans-fatty acids in traffic light labelling of traditional sweets distributed in Isfahan. Iran ARYA Atherosclerosis. 2020;16(2):79.

    PubMed 

    Google Scholar
     

  • Edalati S, Omidvar N, Haghighian Roudsari A, Ghodsi D, Zargaraan A. Development and implementation of nutrition labelling in Iran: a retrospective policy analysis. Int J Health Plann Manag. 2020;35(1):e28–44.

    Article 

    Google Scholar
     

  • Amiesimaka OI. The WHO REPLACE Trans Fat Action Package–From Policy to Practice. 2018. https://www.med.tum.de/en/system/files/pages/the_who_replace_trans_fat_action_plan_from_policy_to_practice_kk_oia.pdf. Accessed 10 Jan 2022.

  • Haghighian Roudsari A, Zargaran A, Milani Bonab A, Abdollah S. Consumers’ perception of nutritional traffic light in food products: a qualitative study on new nutritional policy in Iran. Nutr Food Sci Res. 2018;5 Suppl 1:69.

  • Fitzpatrick L, Arcand J, L’Abbe M, Deng M, Duhaney T, Campbell N. Accuracy of Canadian food labels for sodium content of food. Nutrients. 2014;6(8):3326–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Food Safety authority of Ireland. Accuracy of nutrition labelling of pre-packaged food in Ireland. 2010. Accessed 12 Sept 2020.

  • Watson V, Carnon A, Ryan M, Cox D. Involving the public in priority setting: a case study using discrete choice experiments. J Public Health. 2012;34(2):253–60.

    Article 

    Google Scholar
     

  • link

    By admin

    https://muehlenbar.de/wp-includes/slot-online/

    https://the-chef.co/sbobet/

    Slot Gacor Terbaru

    Link Slot Gacor

    Sbobet

    Situs Slot Gacor

    Slot Gacor 2022

    Login Sbobet

    Daftar Sbobet

    https://www.dcosmeticclinics.com.au/wp-includes/sbobet/

    https://thetastesoflife.com/wp-includes/sbobet/

    https://www.townshipofsugargrove.com/wp-includes/slot-gacor/

    https://texasmamaboutique.com/wp-includes/slot-gacor/

    https://bizu-me.com/wp-includes/slot-gacor/

    https://tiketa.co.za/wp-includes/slot-gacor/

    situs slot gacor

    slot gacor gampang menang

    slot gacor terbaru

    daftar sbobet

    slot bonus newmember

    link sbobet

    sbobet login